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Abstract

A method for the determination of 4-aminophenol as an impurity in paracetamol (N-(4-hydroxyphenyl)-acetamide)
by proton nuclear magnetic resonance (1H-NMR) spectroscopy has been developed. The 13C-satellite from the
protons in the ortho position from the hydroxyl group in paracetamol was used as an internal standard, although
these peaks interfered with the peaks from the protons in 4-aminophenol. Because of interference in the spectra and
non-linearity over a wide calibration range, a Bayesian regularized neural network model was used for calibration.
Various kinds of data preprocessing were examined: zero filling, multiplication by a negative exponential function
(line broadening), followed by Fourier transformation of the free induction decay (FID). The NMR spectral data
were automatically phased and shift-adjusted by means of a genetic algorithm. Multiplicative scatter correction and
data compression by wavelets and sequential zeroing of weights variable selection were performed to obtain an
optimal calibration model. Neither zero filling of the FID nor line broadening improved the calibration models with
regard to error of prediction, so these processes were excluded in the final model. The generated Bayesian regularized
network model was evaluated with an independent test set. Four different models with different test sets were
constructed to explore the quality of the calibration. The mean error of the optimal calibration model was
25.3×10−6 weight of 4-aminophenol per weight paracetamol. The method is characterized by being relative fast,
simple and sufficient sensitive for typical pharmaceutical impurity determinations. © 2002 Elsevier Science B.V. All
rights reserved.

Keywords: Quantitative nuclear magnetic resonance; Bayesian regularized neural networks; Impurity determination; 4-Aminophenol;
Paracetamol

www.elsevier.com/locate/jpba

1. Introduction

In general, the proton nuclear magnetic reso-
nance (1H-NMR) spectrum is very rich in infor-
mation. It is structurally specific and a useful tool
for both identification and quantification of or-
ganic compounds. In theory, the peak intensity of
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each NMR signal exactly reflects the molar ratio
of the 1H nuclei present, thus making the tech-
nique conceptually simple for quantification.
Other advantages of quantitative NMR (QNMR)
are its direct applicability (minimum sample
preparation), its selectivity and its non-destructive
nature. NMR may also give quantitative informa-
tion about other potential contaminants. Com-
pared to other analytical techniques, the major
disadvantage of QNMR is its high limit of detec-
tion, a relatively large quantity of sample being
required. This depends particularly on the very
small differences in energy that are measured.
Because organic compounds typically generate
several peaks, the complexity of the spectra, espe-
cially for 1H-NMR, may also cause problems.

Early research on QNMR has been done by
Hollis [1], Anhoury et al. [2], O’Neill et al. [3],
Bowen et al. [4] and Kasler [5]. QNMR has been
used for absolute as well as relative quantification.
In order to obtain an assay, an internal reference
has to be employed. When analysing impurities,
however, the relative amounts are determined.
The use of 1H-NMR for impurity determination
has previously been reported [6–15]. At low im-
purity concentrations, the interference of 13C-
satellites may present a difficulty in case of
interference. 13C-satellites are peaks arising from
proton couplings to 13C for protons bound to
carbon atoms. The proton signal has two 13C-
satellites, each with the intensity of 0.55% of the
area of the proton resonance. Quantification in
cases of interference can be accomplished by sub-
tracting the appropriate amount of the 13C-satel-
lite from the area of the peaks of interest [14], or
the problem may be handled with the aid of
calibration models.

The purpose of this study was to develop a
method for the determination by QNMR of 4-
aminophenol, an impurity in paracetamol (N-(4-

hydroxyphenyl)-acetamide), whose structures are
shown in Fig. 1. In the study, one of the 13C-satel-
lites from the protons in ortho positions seen from
the hydroxyl group in paracetamol (marked as
proton 1 in Fig. 1) was used as an internal
standard. Similar approaches have been reported
by Lindgren [6] and Fux [13]. In the present
study, the internal standard partly interfered with
the peaks from 4-aminophenol. Since accurate
integrations of overlapping Lorentzian shape
peaks are difficult [16,17] and a nonlinear rela-
tionship was expected in a wider concentration
range, because of this peak overlap, nonlinear
multivariate calibration was examined.

In order to derive as suitable a method as
possible, a number of NMR parameters were
systematically examined, together with different
methods of preprocessing the NMR data. The
free induction decay (FID) was multiplied by a
negative exponential function, i.e. line broaden-
ing, and zero filling of the FID was performed.
After Fourier transformation, the spectra were
automatically phased and shifts were aligned by
means of a genetic algorithm (GA). Baseline cor-
rection was performed by multiplicative scatter
correction (MSC) and spectra were compressed by
means of wavelets and sequential zeroing of
weights (SZW) variable selection [18].

2. Theory

2.1. NMR instrumentation

Instrumental parameters need to be carefully
controlled to reduce the variance when NMR is
used for quantification. Generally speaking, the
stronger the field and the higher filling factor of
the probe, the higher the S/N obtained. The filling
factor is a measure of the fraction of the coil
volume occupied by the sample [19]. These
parameters are set by the standard set-up on the
instrument and have not been optimized in this
study.

The influence of the magnetic field becomes
more homogeneous if the sample is spinned, and
this improves the signal. Good shimming, i.e.
adjustment of the homogeneity of the applied

Fig. 1. Structure formula of paracetamol (left) and 4-
aminophenol (right). The numbered positions are the protons
involved in the calibration models.
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magnetic field, is also a necessity for a good S/N
[20]. According to Traficante [21], a pulse angle of
83° and a pulse repetition period of 4.5 times the
longest T1 give the optimum recovery after a
pulse. Furthermore, it is a known fact that the
S/N increases with the square root of the number
of scans/transients. This factor has to be chosen
by considering the analysis time and the required
S/N.

Increasing the sample concentration and hence
the number of detected nuclei increases the NMR
signal and consequently the S/N. The number of
detected nuclei also depends on the number of
structurally equivalent nuclei in the molecule
studied that give rise to one signal. Further, the
appearance of the signal depends on the structural
and chemical surroundings of the proton. To give
an example, a singlet peak has a much higher
signal-to-noise ratio than a doublet peak although
they come from the same number of nuclei and
thus have the same total area. This should, if
possible, be considered when choosing the peak
for quantification.

When analysing impurities, a weak signal has to
be recorded in the presence of a strong peak from
the main substance. This makes the range of the
analogue to digital converter (ADC) important.

2.2. Data preprocessing

The signal collected by the NMR spectrophoto-
meter is the sum total of oscillating, decaying
voltages originating from magnetizations from the
nuclei in the sample, each with a characteristic
frequency. This is called the FID. To obtain a
spectrum as a function of frequency, the FID is
Fourier-transformed.

To obtain an accurate quantification with
NMR, it is of considerable importance to con-
sider the various ways of processing data. Typi-
cally, Fourier transformation of the FID, phase
correction of the spectra, integration and/or cali-
bration are required. Several other processes, e.g.
line broadening and zero filling of the FID, base-
line correction, shift alignment, MSC, wavelet
compression and variable selection, may also be
performed to improve signals and facilitate cali-
bration modelling. In this section we will describe

these techniques briefly and will refer to the litera-
ture for further reading.

Most of the signal in the FID occurs in the first
section of data points, whereas the noise should
be constant throughout. Processing of the FID
that emphasizes its early part should increase the
S/N. The most usual way to do this is through
line broadening, multiplying the FID by a nega-
tive exponential function before applying a
Fourier transform [22].

The digital resolution can be improved by in-
creasing the acquisition time and hence collecting
more data points. Zero filling also increases the
digital resolution through the interpolation of ad-
ditional points in the spectrum. This is done by
adding a string of zeroes to the end of the FID
prior to Fourier transformation. This is fully de-
scribed by, for example, Rabenstein and Keire
[23].

Genetic algorithms (GAs), were used for auto-
mated phasing and shift alignment in this study.
GAs search for the solution space of a function
by simulated evolution. A GA usually starts with
a random population of candidate solutions,
where a string represents each solution. Each
string is subjected to a genetic search, which can
encompass assignment to a fitness value according
to an objective function, selection of strings for
further replication, recombination crossover and
mutation. This genetic search runs until pre-
defined optimization criteria are met. Comprehen-
sive discussions of GA can be found in the
literature, e.g. by Goldberg [24].

By adjusting the slope and offset of the sample
spectra to the average spectrum, the chemical
information is preserved while other differences
between the spectra are minimized. This is called
MSC and is briefly described as follows. Each
spectrum is fitted to the average spectrum as
closely as possible by least squares:

xi=ai+bi mj+ei

where xi is an individual spectrum i, mj the mean
spectrum of the group and ei the residual spec-
trum. Ideally, ei represents the chemical informa-
tion in spectrum i. The corrected spectrum,
xi(MSC), is calculated using the fitted constants ai

(intercept) and bi (slope):
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xi(MSC)=
(xi−ai)

bi

This is further described by Geladi et al. [25].
Wavelet transformation has relatively recently

become a widely applied processing tool in signal
processing for the efficient extraction of relevant
information from spectral data, e.g. by data com-
pression and noise reduction. Unlike Fourier
transformation, which decomposes the signal into
sine and cosine components of different frequen-
cies, the wavelet transformation decomposes the
signal into pieces of scaled and shifted versions of
the mother wavelet [26]. The effect of the shifting
and scaling process is the simultaneous appear-
ance of a signal at multiple scales, which is called
multiresolution. The wavelet thus transforms a
portion of the data into different frequency com-
ponents and can thereby reduce the number of
variables while still preserving most of the infor-
mation. In this study, discrete orthonormal
wavelets are applied to NMR spectral data. The
orthogonality minimizes the number of wavelet
coefficients and suppresses unwanted relationships
between the coefficients. This results in efficient
data compression.

The variable selection method used in the
present study is based on the SZW approach, in
which the influence of each spectral variable is
evaluated for an established neural network (NN)
model. The variable influence is calculated as
rmdiff, which is the difference in the root-mean-
square error of prediction, rmsep (Eq. (1)), be-
tween the entire (original) model and when the
weights in the NN model are zeroed to exclude
one variable at the time. By means of this ap-
proach, each variable is evaluated by its contribu-
tion to the model, and a predetermined threshold
can be applied to sort out the most important
variables [18].

2.3. Calibration

Theoretically, as mentioned above, the peak
intensity exactly reflects the molar ratio. If the
peaks appear close to each other in the spectra,
their factor of response is about the same and the
molar ratios may be calculated correctly without
calibration. Since the peak shapes are Lorentzian

in an NMR spectrum, an integral would have to
extend to infinity in both directions in order to
include all of the peak area. When the peaks
appear close to each other, the range of integra-
tion, however, is limited. The integration then has
to be performed in the same way on every peak of
interest. This is easily done if the peaks are sin-
glets and have no peaks immediately surrounding
them. However, if the peaks are multiplets and/or
interfere with each other, this is a more difficult
task. A number of factors make it difficult to
obtain precise NMR integrals, as has been re-
ported in previous papers [16,17]. A calibration
model may account for and handle these prob-
lems with integration and also deviations from the
molar ratio.

Multilayer feed-forward NNs are utilized for
nonlinear regression. NNs are composed of a
highly interconnected mesh of nonlinear and lin-
ear computing elements. The fundamental pro-
cessing element of a NN is the neuron. Neurons
are connected by links, and there is a coefficient,
a weight, associated with each link. The neurons
receive external inputs or inputs from other neu-
rons and perform a weighted sum of these inputs.
The neurons process the resulting signal with a
transfer function and then produce an output to
other neurons or as an output from the entire
model. A process known as training or learning
develops the values of the weights. Starting from
random values of the weights, output vectors are
calculated from a set of input vectors for which
the right answers are known a priori. After the
calculation, an algorithm based on the differences
between the output values obtained and the target
values is used to modify the weights. As this
process is repeated, the weights gradually con-
verge to values that transform each input pattern
to an output pattern closely conforming to its
target. Any type of variation in the inputs may be
accounted for by including them in the training
process [27].

An important issue in developing calibration
models is the validation. The purpose of the vali-
dation is to derive estimates of the accuracy of the
predictions from the calibration model. A contin-
uing validation with a training set while the model
is built gives an indication of the quality of the
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Table 1
The measured concentrations of the calibration solutions in
ppm, weight per weight of 4-aminophenol in paracetamol

Y B

0.0 0.0
42.2 42.1

84.184.7
125.3126.3
428.8434.1
709.6712.9

1005.5 991.6

generalization quality [30]. The stop criterion of a
Bayesian trained network is connected to the
Marquardt adjustment parameter. When the
parameter exceeds a maximum set value, the
training is stopped [31].

A set of test samples, not included in the train-
ing process, was predicted as an independent
model performance measurement, with rmsep as
the error function.

3. Experimental section

3.1. Preparation of test samples

The calibration samples were prepared in 5 mm
NMR tubes by dissolving paracetamol and 4-
aminophenol in DMSO-d6 to the concentrations
showed in Table 1. The sample with the smallest
concentration of 4-aminophenol was diluted four
times, and all the solutions were weighed into the
samples to reach a maximal accuracy. The maxi-
mum amount of paracetamol in the samples was
investigated in order to get as high an S/N ratio
as possible, while avoiding overloading of the
ADC. An appropriate concentration was found to
be 400 mg paracetamol per ml. The calibration
samples were stored in the dark in a refrigerator
for up to one week. The two calibration series in
Table 1 were run two times each, the runs being
named Y1, Y2, B1 and B2.

3.2. NMR instrumentation

The 1H-NMR spectra were recorded on a
Varian UNITY spectrometer working at 400
MHz for 1H with an ASW probe and a 16-bit
ADC. The samples were spinned at 20 Hz. Shims
z and z2 were carefully shimmed. Pulse angle and
repetition time were chosen according to Trafi-
cante [21] to be 83° and 4.5×T1, respectively,
(13.5 �s and 6.75 s for the peak from paraceta-
mol, proton 1 in Fig. 1). The acquisition time was
adequately chosen to be 2.5 s.

The oversampling factor was set at 20, which
was the maximum on the NMR spectrometer
used. This gave a maximum spectral width of
1250 Hz. A narrower width did not improve the

model, depending on the number of learning cy-
cles in the NN training. This is critical due to the
risk of overtraining. The goal of the NN training
is to generate a NN that produces small errors on
the training set, but will also respond properly to
novel inputs.

The rmsep (Eq. (1)) was used as the error
function in this work.

rmsep=

��(ypred−ymeas)2

n (1)

where ypred is the predicted concentrations, ymeas is
the measured concentrations and n represents the
number of predictions.

The training of a feed-forward NN trained with
quasi-Newton back propagation [28] is stopped
when the rmsep from the validation set reaches a
minimum. The training function for a Bayesian
regularized artificial NN (BRANN) in this study
updates the weights and bias values according to
Levenberg–Marquardt optimization [27,29]. It
minimizes a combination of squared errors and
weights and then determines the correct combina-
tion to produce a network that generalizes well. In
a standard feed-forward NN training method,
single sets of parameters (weights, biases etc.) are
used. The Bayesian approach to NN modelling
considers all possible values of network parame-
ters weighted by the probability of each set of
weights. Bayesian regularization minimizes a lin-
ear combination of squared errors and weights. It
also modifies the linear combination so that at the
end of training the resulting network has a good
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signals. A digital filter with a sharp cut-off was
applied to avoid the peaks folding in. The number
of points was 25 k, the maximum according to the
set-up of the instrumentation. The location of the
carrier frequency was investigated to give minimal
disturbing effects in the spectral area of interest,
while still being located as near to the peaks for
quantification as possible. The number of tran-
sients/scans was preset at 200, which gave a rea-
sonable acquisition time of about 20 min.

3.3. Data preprocessing

All of the mathematical processing was per-
formed in the software MATLAB [31] Prior to the
Fourier transformation, the FIDs were multiplied
by a negative exponential function and zero filling
to double the number of data points was
performed.

By means of a GA, the spectra were automati-
cally phased with a zero and a first-order phase
correction and corrected laterally until the shifts
were aligned. The fitness criterion was the sum of
the differences between the actual spectrum and a
manually phased spectrum. The same arbitrary
number of cycles was performed for each spec-
trum until the differences were insignificant.

The spectral area of interest, one of the 13C-
satellites and the 4-aminophenol signal were uti-
lized for calibration. This part of the spectrum
was treated with MSC and wavelet compressed to
162 variables, a variable reduction of 50%. In this
paper, two near-symmetric wavelets, symlet 2 and
symlet 8, have been employed. The name symlet
denotes least-asymmetric orthogonal Daubechies
wavelet. The number in the name refers to the
number of coefficients necessary to define the
specific wavelet. Different combinations of data
pretreatment with and without zero filling,
wavelet compression and line broadening were
examined.

The data were preprocessed so that the input
data points fell in the interval {−1, 1} [29]. The
number of wavelet variables was reduced by vari-
able selection by the SZW approach [18]. The NN
architectures for the variable selection were a
three-layer (input, hidden and output layer) feed-
forward network trained with BFGS quasi-New-

ton back propagation [31]. The input neurons
received the wavelet-compressed spectra as a vec-
tor. The activation function for the three neurons
in the hidden layer is the sigmoid arctan function.
The output function is linear. Fifty nets were
performed and the net with smallest error, in an
rmsep sense, was utilized in the variable selection
[18].

3.4. Calibration

A Bayesian regularized NN was used to build
the calibration model. The network is included in
the MATLAB [31] NN toolbox and is a back
propagation neural net that incorporates the
Bayesian regularization algorithm for finding the
optimum weights according to Levenberg–Mar-
quardt optimization [27,29]. The architectures of
the net are the same as for the variable selection
described above. The variables from the variable
selection were utilized to build the model.

Four calibration models were performed with
partly different data. Two of the calibration series
were used for building the model in the neural net
for variable selection. One of the series was used
as a validation set and the fourth set was ex-
cluded, this being utilized for evaluation of the
final calibration model. A schematic table shows
the procedures in Table 2. Rmsep (Eq. (1)) was
calculated and the mean error from a test set is
reported as a measure of the model error.

4. Results and discussion

4.1. NMR instrumentation

When optimizing the NMR parameters it was
not necessary to make the signal exactly propor-
tional to the number of nuclei since a calibration
model was constructed. The importance lay in
using exactly the same instrumental parameters
every run time in order to achieve as high re-
peatability and as high a signal as possible. The
signal to noise improvement from signal averag-
ing is proportional to the square root of number
of spectra averaged. Thus, the parameters of the
NMR instrumentation were chosen so as to ob-
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tain a balanced compromise between signal inten-
sity and analysis time, in this case about 20 min.

4.2. Data preprocessing

Although, zero filling did improve the digital
resolution visually, the error of prediction from
the model with zero filling was higher than the
error from the model without zero filling. Nor did
line broadening improve the model’s ability to
predict the concentrations. The differences in er-
ror of prediction between the different models are
shown in Table 3, indicating that the standard
procedures in qualitative NMR are not directly
transferable to QNMR procedures.

Autophasing, shift alignment, MSC, data com-
pression by wavelets and variable selection were
performed to simplify the building of the multi-
variate calibration model. The MSC, autophasing
and shift alignments were done to minimize the

differences between spectra that did not corre-
spond to concentration variations and to mini-
mize instrumental variations. However, the
spectral quality was adequate between experimen-
tal runs. No spectral standardization between
runs to compensate for drift in instrumental
parameters was required.

No significant difference in results was noticed
between the two symlet wavelets symlet 2 and
symlet 8. We arbitrarily chose to use symlet 2,
since this is the simpler of the two. The wavelet
reduction was performed in one step because this
gave a sufficient number of variables for use in
the variable selection process. The spectra in Fig.
2 show the appearance after autophasing and shift
correction, normalization, MSC and wavelet data
compression.

Fifty independent NNs were performed for the
variable selection and the one with the smallest
error was used. This resulted in 26 significant

Table 2
A schematic table showing the procedures of variable selection and calibration

Calibration series Created models

PredictedMeasured MB1 MB2 MY1 MY2

B B1 CalibrationTest Calibration Val/Cal
CalibrationB2 Test Val/Cal Calibration

Test CalibrationVal/CalY CalibrationY1
Calibration TestY2 Calibration Val/Cal

Val/Cal: validation set in the variable selection and calibration set in the calibration; Test: independent test set in calibration,
excluded from variable selection; Calibration: calibration set in both variable selection and calibration.

Table 3
Error of prediction from calibration models with different data preprocessing

Waveletb rmsep (root-mean-square error of prediction)/(ppm) weightExponential functioncZero filla

4-aminophenol per weight paracetamol

MB1 MB2 MY1 MY2 Mean

No No 35.0No 23.9 15.4 27.1 25.3
32.2Yes 59.120.9No 37.437.5Yes

62.0dYesYesYes 58.5d 29.9d 46.4 49.2

MB1 is the calibration model with B1 as an independent test set in both variable selection and calibration, etc. see Table 2.
a Zero filling of the FID.
b Wavelet compression with symlet 2 in one step.
c Line broadening of the FID.
d Y2 was used as a test set in the variable selection but also included in the calibration model, where the test set is given by the

name of the model. This may give a slightly smaller error than if the test set had been the same in the model throughout.
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Fig. 2. The visible results from different data pre-treatments of the spectral area of interest, x-axis: 6.5–6.35 ppm; Autophasing and
shift correction, normalisation, MSC and wavelet compression. The numbers in the spectrum at the upper left identify the numbered
protons in Fig. 1. The spectra from all the calibration series (Y1, Y2, B1 and B2) are included.

wavelet variables based on the predetermined
threshold. These were used for the NN building
of the calibration model. The variables picked
from the variable selection are illustrated in Fig.
3. The chosen variables all belong to the region
in the spectral window that is expected to relate
to the two substances studied.

The preprocessing of spectral data before the
calibration model is built reduces the large
quantity of information contained in an NMR
spectrum, while preserving the relevant quantita-
tive information. Autophasing, MSC and shift
alignments were performed to minimize the dif-

ferences between spectra that did not correspond
to concentration variations. However, from a
Bayesian regularized NN perspective, due to
computational constraints, the number of vari-
ables was too large (324), which meant that data
compression had to be performed. The wavelet
reduction of data (162 data points) and the vari-
able selection reduce the number of variables
further but preserves the information necessary
for quantification. The relatively few (26) vari-
ables resulting make the building of the calibra-
tion models more rapid and give a more robust
model.
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Fig. 3. Illustration of the variable selection. This is an example where Y2 is the test set and neither zero filling, line broadening nor
wavelet compression are performed. The dots show the selected variables. x-Axis: 6.50–6.35 ppm, and y-axis: rmdiff [18].

4.3. Calibration

The errors from the evaluation of each cali-
bration model are shown in Table 3. For each
test set, three independent calibration models
were performed. The results were quite similar
throughout each preprocessing condition, which
indicates that the modelling is fairly robust. The
mean rmsep of the final calibration model was
25.3×10−6 weight 4-aminophenol per weight
paracetamol.

The mean rmsep in a molar relationship is
35.0×10−6 4-aminophenol/paracetamol. This is
on the edge of what can be detected with the
ADC sampling with 16 bits. Theoretically, the
height of the smallest detectable peak is 1/
(216)=15 ppm (mole per mole). A peak twice as
high corresponds to 30 ppm (mole per mole),
which is really close to the mean error level
from the resulting calibration models. These rel-
atively small errors indicate that the preprocess-
ing and reduction of data have been performed

without any loss of any quantitative informa-
tion.

Plotting predicted versus measured data shows
an obvious linear relationship, an example of

Fig. 4. Measured versus predicted concentrations from the
final calibration model. This is an example where Y2 is the test
set and neither zero filling, line broadening nor wavelet com-
pression are performed. The equation for the line is y=
0.987x+17.7 and R2=0.996.
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which is shown in Fig. 4 with a slope of 0.99 and
an intercept of 18 ppm (weight per weight). A
statistical analysis of the linear fit shows that zero
is included in the intercept with a confidence
interval of 95%. This is true for all of the four
models. The repeatability of these predictions was
estimated by calculating the relative standard de-
viation (RSD), of predictions from the test sets at
the same concentration level. In the middle of the
concentration range, at 430 ppm (weight per
weight), the RSD was 7.6%. This is a satisfying
result in connection with impurity determination.

Although, the proposed scheme for preprocess-
ing is somewhat complex, once developed it is
readily applied for quantitative measurements.
The combined affect of NMR analysis, prepro-
cessing and NN regression of NMR data for
analysing impurities is simple and relatively fast,
about 20 min. The advantages of the method are
that no pretreatment of the samples is needed
(only dissolving), possible unknown impurities
may be detected because of the selective spectrum
and the analytes can easily be recycled if needed.

5. Conclusions

The results of this study indicate that QNMR
in combination with multivariate methods has a
potential for impurity determinations, not only
for well-resolved NMR shifts but also for cases
where a substantial peak overlap occurs. When
peaks interfere with each other, nonlinear multi-
variate calibration methods may successfully be
used. Since QNMR may have difficulties dealing
with e.g. peak shift differences between spectra
and base line drifts, the data preprocessing seems
to be of great importance to abbreviate these
phenomena. Common spectral preprocessing
techniques such as MSC can substantially reduce
some differences that are not dependent on the
concentration variations. This study has also
shown that some preprocessing of data that are
intuitively known to improve the spectra does not
improve the predictability in a quantitative study.

If the analyse time, i.e. the number of scans,
had been increased, the S/N in the method would
probably have been higher. However, this would

not perhaps have decreased the errors of the
peaks utilized for integration according to the
discussion above about the influence of the range
of the ADC, which points to the importance of
the dynamic range of the ADC used in QNMR.

An important advantage of QNMR is its direct
applicability. Where other analytical methods in-
clude several steps of sample preparation, the
NMR analysis most often merely requires the
sample to be dissolved in a deuterated solvent.
The ready availability nowadays of NMR instru-
mentation at even higher field strengths than 400
MHz and the rapid development of cryoprobes
make QNMR a suitable alternative to conven-
tional methods for impurity determinations.
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